

Population Change of Cerulean Warblers Estimated From the North American Breeding Bird Survey

John R. Sauer and William A. Link USGS Patuxent Wildlife Research Center

Laurel, MD 20708

North American Breeding Bird Survey

- Started in 1966
- Roadside survey
 - Conducted in June, 1 survey/route/year
 - 24.5 mi roadside survey "routes" conducted by volunteer observer
 - 50, 3-min point counts along route
- Sum of counts for each species over 50 stops form the index of abundance for the route

North American Breeding Bird Survey Route Locations

BBS is a Primary Source of Bird Population Data in North America

- >400 species encountered
- Georeferenced (at route level)
- Essential dataset for distribution/change for Cerulean Warblers
- Several important limitations imposed by survey design

Today

- Discuss available information from the survey
- Describe population change for Cerulean Warblers, as estimated from the BBS
- Discuss value of information

Statistical Analysis

- Estimate population change at different scales
 - Route level
 - Bird Conservation Region (BCR) scale
 - Range-wide
- Statistical methods
 - Hierarchical models
 - Route-regression method

Estimation of Population Change

$$\log(\lambda_{i,j,t}) = S_i + \beta_i (t - t^*) + \omega_j + \eta I(j,t) + \gamma_{i,t} + \varepsilon_{i,j,t}$$

Notation:

 λ is expected value of Y

Stratum-specific intercept, slope, and year effects $(S,\beta,$ and $\gamma)$,

Observer/route effects (ω),

and overdispersion effects (ϵ)

Observer/route effects, Year Effects, and Overdispersion effects are treated as mean zero normal random variables.

Presentation of Results

- Estimates of population change (%/yr) and Confidence Intervals
 - 10 BCR's, and Survey-wide
- Graphs of population trajectories
- Maps of route-level results
 - Arc view coverages available for additional analysis

Bird Conservation Regions

http://www.bsc-eoc.org/international/bcrmain.html

BCR in which Cerulean Warblers Occur

Relative Abundance Map From BBS Data (Means 1992-2001)

Population Change Map From BBS Data (Increase/Decline by Route 1966-2001)

Route Level Data Provide the Most Local Level of Summary

Appalachian Mountains West Virginia

Appalachian Mountains West Virginia

- Hierarchical model
 - -3.06 %/yr (-4.44, -1.75)
- Route regression
 - Trend -3.35 %/yr (-4.42, -2.28)
 - 42 Routes
 - Abundance: 2.88 birds/route

Appalachian Mountains West Virginia

Appalachian Mountains East

Appalachian Mountains East

- Hierarchical model
 - -1.44 (-3.37, 0.50)
- Route regression
 - Trend -1.26 (-3.20, 0.68)
 - 16 Routes
 - Abundance: 0.27

Appalachian Mountains West

Appalachian Mountains West

- Hierarchical model
 - -3.42 (-4.97, -1.82)
- Route regression
 - Trend -3.98 (-5.39, -2.58)
 - 38 Routes
 - Abundance: 1.06

Appalachian Mountains North

Appalachian Mountains North

- Hierarchical model
 - $-0.44 \ (-1.75, 0.90)$
- Route regression
 - Trend -1.86 (-3.62, -0.10)
 - 39 Routes
 - Abundance: 0.23

Central Hardwoods

Central Hardwoods

- Hierarchical model
 - -3.95 (-5.37, -2.58)
- Route regression
 - Trend -6.67 (-9.42,-3.92)
 - 34 Routes
 - Abundance: 0.17

Lower Great Lakes/ St. Lawrence Plain

- Hierarchical model
 - $0.60 \ (-1.84, 3.10)$
- Route regression
 - Trend 0.90 (-5.41, 7.21)
 - 21 Routes
 - Abundance: 0.02

Piedmont

- Hierarchical model
 - 2.70 (-0.84, 6.30)
- Route regression
 - Trend: -6.95 (-28.86, 15.95)
 - 12 Routes
 - Abundance: 0.01

West Gulf Coastal Plain/ouachitas

- Hierarchical model
 - -14.03 (-20.11, -8.26)
- Route regression
 - Trend -15.87 (-23.18, -8.57)
 - 7 Routes
 - Abundance: 0.01

Eastern Tallgrass Prairie

- Hierarchical model
 - -4.68 (-8.90, -0.26)
- Route regression
 - Trend -9.33 (-17.31, -3.05)
 - 9 Routes
 - Abundance: 0.01

Prairie Hardwood Transition

- Hierarchical model
 - -4.48 (-7.20, -1.73)
- Route regression
 - Trend -7.18 (-11.60, -2.77)
 - 14 Routes
 - Abundance: 0.05

Survey-Wide

Survey-Wide

- Hierarchical model
 - -3.02 (-4.04, -1.99)
- Route regression
 - Trend: -3.53 (-4.71, -2.34)
 - 232 Routes
 - Abundance: 0.27
 - Website:

Trend:-4.5 (-5.7, -3.2), P = 0.00,

235 Routes, Abundance: 0.33

BBS has Several Important Limitations

- Point counts do not detect all birds
 - Observers count with varying efficiency
 - Observers have been getting better over time
 - Even the best observers vary in efficiency over time and space
- Roadsides do not reflect the entire landscape
 - Habitats tend to differ
 - Rate of change of habitats differs along roads

Analysis Accommodates Some (But Not All) Deficiencies

- Observer differences accommodated
- Relative abundance is arbitrary
 - Different methods can scale abundances to different levels
- On vs Off road issues cannot be addressed directly. Solutions include:
 - Models (evaluate differences in habitat)
 - Experimental studies (count off roads)